

Certificate of Analysis

NIA Aging Cell Repository

Human induced Pluripotent Stem Cell (iPSC) Line: AG27607*D

Diagnosis	Alzheimer Disease		
Parental cell line mutation	APOE; pArg158Cys		
Parental cell type, cell line ID	Fibroblast, AG21158		
Sex	Female		
Reprogramming method	Retroviral vectors containing OCT4, SOX2, KLF4 and MYC		
Passage number at freeze	P25		
Culture media	mTESR1™		
Feeder or Matrix substrate	Matrigel®		
Recommended passage method and split ratio	Versene; 1:6 every 5-6 days*		
iPSC line establishment publication(s)	Meyer K, PMID: 30699343		

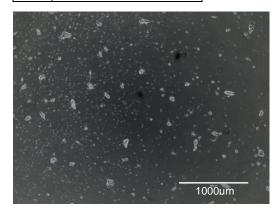
The following testing specifications have been met for this product lot:

Test Description	Test Method	Test Specification	Result
Post-Thaw Cell Viability	Colony doubling	Colony formation and diameter doubling within 5 days	Pass
Sterility	Growth on agar and broth Negative		Pass
Mycoplasma	qRT-PCR	T-PCR Negative	
Alkaline Phosphatase Staining	Cell staining	Il staining >80% cells with positive staining	
Identity Match	STR (THO-1, D22S417, D10S526, vWA31, D5S592, and FES/FPS)	Match parental cell line	
Genomic Integration of Episomal Plasmid	Genomic PCR using plasmid specific primers and endogenous FBXO1 control	No plasmid specific sequence amplified using 100 ng gDNA template	
Detection of Sendai Virus Genome and Transgene	qRT-PCR using SEV specific primers	No detection of SEV genome or transgenes	N/A
Surface Antigen Expression of Stem Cell Markers	Immunostaining and flow cytometric detection	on >80% expression of SSEA4	
Differentiation Potential	Embryoid body (EB) formation and gene expression Minimum of 1 gene per germ layer expressed 2 fold or higher		Pass
Cytogenomics	G-banding	46, XX[20]	

*Note: Recover in 2 wells of a 6-well plate.

Digisha Patel	09/09/2022	Christine Grandizio	
Technician, Stem Cell Laborator	y Date	Manager, Stem Cell Laboratory	Date

Disclaimer: iPSC lines distributed by Coriell Institute for Medical Research may differ from one passage or expansion to another.



Post-Thaw Cell Viability

One distribution lot vial of the cell line was thawed and placed in culture. Cultures were observed daily. Colonies were photographed upon first appearance, then 3 days later. Colonies must double in diameter within 5 days. The area for 5 colonies was measured using image analysis software. The average area is reported here.

Day	Average area (µm²)	
1	5,986	
4	131,904	

Colony area increased by 22 fold.

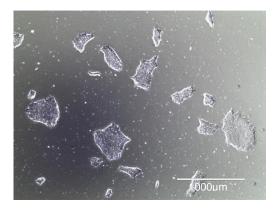


Figure 1A. Colonies post thaw (Day 1)

Figure 1B. Colonies 3 days after first observation (Day 4)

Alkaline Phosphatase Staining

Cells were stained using the StemTAG™ Alkaline Phosphatase Staining Kit from CellBiolabs, Inc.

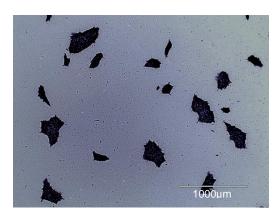
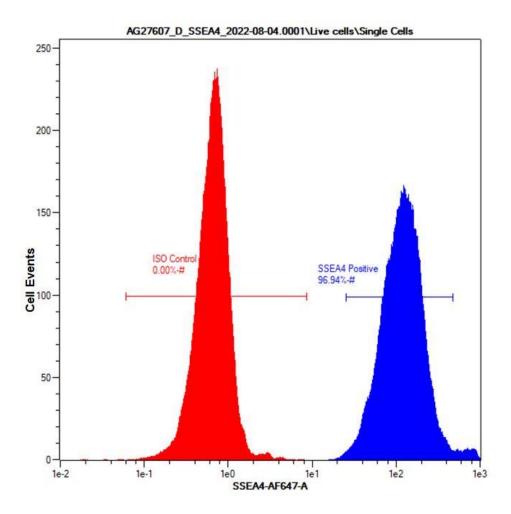



Figure 2. iPSC colonies showing alkaline phosphatase activity

Surface Antigen Expression of Stem Cell Markers

Undifferentiated cells are stained for stage specific embryonic antigen 4 (SSEA4) which is expressed on the surface of undifferentiated human pluripotent stem cells. Cells were analyzed using the MACSQuant Flow Cytometer by Miltyeni Biotec. More than 80% of cells should stain with antibodies specific for SSEA4.

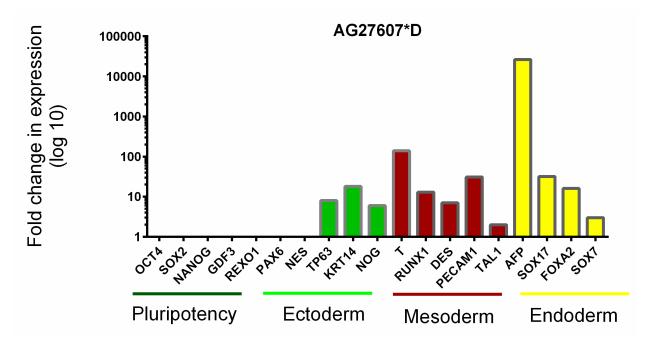


Figure 3. Representative histogram of SSEA4 positive population showing an overlay of isotype stained control (red) and SSEA4 positive population (blue)

Differentiation Potential

Cells are differentiated by embryoid body (EB) formation to assess pluripotency. RNA is extracted and gene expression is measured by quantitative RT-PCR. Ct values are adjusted to the endogenous housekeeping gene GAPDH. Relative gene expression is shown as the fold difference in expression compared to undifferentiated cells. Expression of at least one gene per germ layer should increase by 2 fold or higher.

Gene	Fold change	Gene	Fold change	Gene	Fold change	Gene	Fold change
OCT4	0	PAX6	0	Т	139	AFP	26392
SOX2	0	NES	0	RUNX1	13	SOX17	32
NANOG	0	TP63	8	DES	7	FOXA2	16
GDF3	0	KRT14	18	PECAM1	31	SOX7	3
REXO1	0	NOG	6	TAL1	2		

Figure 4. Fold change in expression of pluripotency genes and tri-lineage specific genes

Note: Negative values are set as 0. Calculations are performed using the 2^{-ΔΔCT} method. (*Livak KJ*, *Schmittgen TD. Methods. 2001 Dec;25(4):402-8.PMID:11846609*)

Cytogenomics

Cytogenetic Banding Technique	G-banding
Passage at Analysis	P28
Metaphase Cells Counted	20
Metaphase Cells Analyzed	5
Metaphase Cells Karyotyped	5
Short ISCN	46, XX [20]

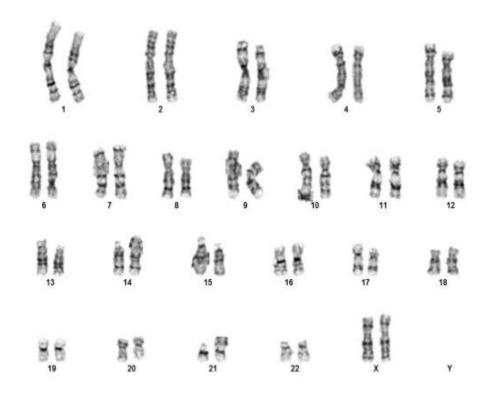


Figure 5. G-banding karyogram