| Product description | Human iPSC clonal line in which CETN2 has been endogenously tagged with mTagRFP-T using CRISPR/Cas9 technology | | |--|--|--| | Parental cell line | Parental hiPSC line (WTC/AICS-0 at passage 33) derived from fibroblasts reprogrammed using episomal vectors (OCT3/4, shp53, SOX2, KLF4, LMYC, and LIN28). Coriell catalog: GM25256 | | | Publication(s) describing iPSC establishment | Kreitzer et al (2013) Am. J. Stem Cells, 30; 2(2): 119-31 | | | Passage of gene edited iPSC reported at submission | p22a | | | Number of passages at Coriell | 0 | | | Media | mTeSR1 | | | Feeder or matrix substrate | substrate Matrigel | | | Passage method | Accutase | | | Thaw | 1 million cells (ea vial) in 10 cm plate - ready for passaging in 3-4 days | | | Seeding density | 400-800K cells/10-cm plate; every 3-4 days (see culture protocol) | | | Test Description | Method | Specification | Result | |---|---|--|---| | Post-Thaw Viable
Cell Recovery | hiPSC culture on
Matrigel | > 50% confluency 3-4 days
post-thaw (10 cm plate) | Pass | | mTagRFP-T
insertion at
genomic locus -
precise editing | PCR and Sanger
sequencing of
recombinant and
wildtype alleles | N-term insertion of
mTagRFP-T in frame with
exact predicted recombinant
allele junctions. No
additional mutations in
either allele. | Pass | | Copy number | ddPCR ^b assay for
mTagRFP-T and
RPP30 reference gene ^c | mTagRFP-T/RPP30: $\sim 0.5 = \text{Mono-allelic}$ $\sim 1.0 = \text{Bi-allelic}$ | Mono-allelic (0.56); CETN2 is on chrX | | Plasmid integration | ddPCR assay to
detect plasmid
integration into the
genome | $\begin{array}{l} {\rm AmpR/RPP30:} \\ < 0.1 = {\rm no~plasmid} \\ {\rm integration} \end{array}$ | Pass (0.002) | | Off-target
mutations | 1) PCR and Sanger
sequencing of 5-10
sites predicted by
Cas-OFFinder ^d
2) Whole exome
sequencing ^e | No mutations at off-target sites assayed | 1) Pass 2) Sequencing in progress | | Other mutations | Whole exome sequencing ^e | Check for acquired
mutations (not detected in
p8 ^a parental line) that affect
genes in Cosmic Cancer
Gene Census | Sequencing in progress | | mTagRFP-T localization | Spinning Disk confocal live cell imaging | Localization to centrioles | Localizes to small puncta, often in pairs at the apical tip of cells. These puncta replicate and reorganize during cell division consistent with the centriole duplication cycle. | | Expression of tagged protein | Western blot | Expression of expected size product | Undetectable by Western blot due to low expression levels. Will require immunoprecipitation to assess further. | |---|---|--|--| | Growth rate | ATP quantitation ^f | Comparable to parental line | Pass | | Expression of stem cell markers | Flow cytometry | Transcription factors: $ \begin{array}{l} \text{OCT4/SOX2/NANOG} \geq \\ 85\% \\ \text{Surface markers:} \\ \text{SSEA3, TRA-1-60} \geq 85\%; \\ \text{SSEA1} \leq 15\% \\ \end{array} $ | Pass | | Germ layer
differentiation | Trilineage
differentation ^g | Expression of endoderm (SOX17), mesoderm (Brachyury), and ectoderm (PAX6) markers upon directed differentiation to all three germ layers | Pass | | Cardiomyocyte differentiation | Palpant et al. (2015) ^h | Beating initiated (D7-D14)
and Troponin T expression
(D20-D30) by flow cytometry | Pass | | Karyotype | G-banding (30 cell analysis) | Normal karyotype, 46 XY | Pass | | Mycoplasma | qPCR (IDEXX) | Negative | Pass | | Sterility (bacterial, yeast and fungal testing) | Direct inoculation and incubation for 10 days | No growth after 10 days | Pass | | Viral Panel Testing ⁱ | PCR | Negative when assayed for
CMV, EBV, HepB, HepC,
HIV1, and HPV | Pass | | Identity of
unedited parental
line ^j | STR | 29 allelic polymorphisms
across 15 STR loci compared
to donor fibroblasts | Identity matched | - ^a This is the number of passages beyond the orignal parental line (WTC/AICS-0 at passage 33). - $^{\rm b}$ Droplet digital PCR using Bio-Rad QX200 - $^{\rm c}$ RPP30 is a reference 2 copy gene used for normalization. - ^d Bae et al (2014) Bioinformatics. 30(10): 1473-1475 - ^e Nextera rapid capture exome - $^{\rm f}$ Promega Cell
Titer-Glo Luminescent Cell Viability Assay (Catalog $\#{\rm G7571})$ - g STEMCELL Technologies STEM
diff Trilineage Differentiation Kit (Catalog #05230) - $^{\rm h}$ Palpant et al (2015) Development. 142
(18): 3198-3209 - ⁱ Viral panel testing was conducted for the parental WTC line prior to editing. Sterility (bacterial, fungal) and mycoplasma testing were conducted in both the parental and edited lines. - j STR tests were conducted for the WTC parental line prior to editing. WTC is the only cell line used by AICS. Edited WTC cells were not re-tested because they did not come into contact with any other cell lines. $\underline{\mathbf{mTagRFP-T}}$ tagging strategy: Used CRISPR-Cas9 methodology to introduce mTagRFP-T at N-terminus of CETN2 as shown below. Figure 1: Top: CETN2 locus; Bottom: Zoom in on mTagRFP-T insertion site at CETN2 N-terminus <u>Post-thaw imaging</u>: One vial of distribution lot was thawed (cells were treated with ROCK inhibitor for 24hrs post-thaw refer to culture protocol). Cultures were observed daily. Colonies were photographed one and three days post-thaw^{1,2} using a Nikon microscope at 4X and 10x magnification. Figure 2: Viability and colony formation one day and three days post-thaw $^{^1\}mathrm{Cells}$ may take up to 3 passages to recover after thaw $^{^2}$ Morphologies observed post-thaw are representative of cell morphologies observed post-passage Imaging labeled structures in endogenously tagged cells: The tagged proteins are expressed endogenously and therefore may not appear as bright as they would in an overexpressed system. For imaging we plate cells onto matrigel-coated high-quality glass bottom coverslips (Cellvis) and image cells in phenol-free mTeSR media (STEMCELL Technologies). Our most common microscope configuration are a Zeiss spinning disk fluorescence microscope with a Yokogawa CSUX1 head, Hamamatsu CMOS camera, and a 561 laser (mTagRFP-T). Cells are imaged either with a 20x 0.8NA objective for lower magnification or 100x 1.25NA water immersion objective for higher magnification, at $37^{\circ}C$ and 5% CO₂ in a temperature-controlled chamber. The approximate laser power measured at the sample for our standard 100x images is ~ 2.5 mW. Figure 3: mTagRFPT-tagged CETN2 localization in an hiPSC colony. Image is a maximum intensity projection of a 3D spinning disk confocal z-stack of a live hiPSC colony. Right image shows centrin (red) overlaid with DNA (Hoechst, blue).